• A. QUANTUM MATERIALS
    • A1. Van der Waals heterostructures at atomic limit
    • A2. Graphene based nanomaterials
    • A3. Quasi-2D systems: MoS2, BCSCO, In2Se3, phosphorene, silicene etc.
    • A4. Iron based superconductors
    • A5. Cuprates
    • A6. Diborides
    • A7. Iridates
    • A8. Hydrides and materials at high pressure
    • A9. Ferroelectrics, relaxors, memistors
    • A10. Magnetic materials
    • A11. Magnetic organic materials
    • A12. Organic superconductors
    • A13. Organic matter for optics and electronic
    • A14. Superlattice of quantum wires
  • B. ASYMMETRIC LATTICES AND CORRELATED DISORDER
    • B1. Non centrosymmetric materials
    • B2. Quasi-crystals
    • B3. Time crystals
    • B4. Incommensurate phases
    • B5. Correlated disordered systems
    • B6. Scale free networks in granular quantum matter
    • B7. Multiplex networks in granular and quasi-crystalline quantum matter
    • B8. Hyperbolic space in disordered materials
  • C. CHARGE - ORBITAL - SPIN – DENSITY WAVES
    • C1. CDW, SDW, ODW systems
    • C2. in high Tc superconductors
    • C3. in nickelates
    • C4. in cobaltates
    • C5. in organics,
    • C6. in hydrates,
    • C7. in complex electronic materials
    • C8. in magnetic materials
  • D. ORBITAL PHYSICS, SPIN ORBIT EFFECTS
    • D1. Multi orbital systems
    • D2. Spin-orbit coupling
    • D2. Spintronics
  • E. TOWARD ROOM TEMPERATURE SUPERCONDUCTIVITY
    • E1. High pressure hydrides
    • E2. Organics
    • E3. Iron based superconductors
    • E4. Cuprates
    • E5. Complex earth science materials
    • E6. Artificial nastructured materials
  • F. DEFECTS AND LATTICE COMPLEXITY
    • F1. Quenched disorder
    • F2. Dopants self-organization and manipulation
    • F3 Defects self-organization and manipulation
    • F4. Stripes of atomic defects
    • F5. Lattice stripes driven by misfit strain
  • G. COMPLEX MAGNETIC STRUCTURES
    • G1. Skyrmions
    • G2. Spin spirals
    • G3. Magnetic structures
    • G4. Magnetic quantum phase transition
  • H. MULTI-COMPONENTS & NANOSCALE SUPERCONDUCTIVITY.
    • H1. Multi-gap superconductors
    • H2. BEC condensation at the Lifhitz transition & Fermi-Bose systems
    • H3. Quantum size effects
    • H4. 2DEG in oxide interfaces
    • H5.  Electron-hole superconductors
    • H6. Curvatronics
    • H7. Lifhitz transitions
    • H8. BEC-BCS crossover
    • H9. Proximity effects
  • I . TOPOLOGICAL QUANTUM MATTER.
    • I1. Majorana Fermions
    • I2. Topological Materials
    • I3. Topological Superconductors
    • I4. Unconventional electronic phase transitions
    • I5. Spin triplet superconductivity
  • J. ISOTOPE EFFECT
    • J1. Isotope effect and superconductivity
    • J2. Isotope effect in magnetic systems
    • J3. Isotope effect at structural phase transitions
  • K. TOPOLOGICAL QUANTUM PHASES
    • K1. Quantum criticality
    • K2. Connection between the quantum phases in condensed matter and quantum chromodynamics
    • K3 Holographic duality in condensed matter physics
    • K4. Sitter/Conformal Field Theory correspondence
    • K5. Non Euclidean geometries in quantum complex matter
  • L. TIME RESOLVED DYNAMICS OF COMPLEX MATERIALS
    • L1. Time crystals
    • L2. Time inhomogeneous electronic crystals
    • L3. Time resolved spectroscopy
    • L4. Time resolved ARPES
    • L5. Time resolved diffraction
  • M. COMPLEX FERMIOLOGY OF SUPERCONDUCTORS
    • M1. Multiband materials
    • M2. Lifshitz transitions
    • M3. Electronic Topological Transitions
    • M4. Fermiology
    • M5. Quantum oscillations
  • N. ULTRACOLD GASES
    • N1. BEC-BCS crossover
    • N2. Bose condensation
    • N3. Optical Lattices
    • N4. Multi-condensates
    • N5. Dynamical phenomena
  • O. UNCONVENTIONAL QUANTUM MATTER
    • O1. Chirality in quantum fluids
    • O2. Chiral superconductors
    • O3. Vortex chiral phases
    • O4. Unconventional geometries
  • P. FERROELECTRICS
    • P1. Local Lattice anomalies in ferroelectrics
    • P2. Multiferroics
    • P3. Relaxors
  • Q. THERMOELECTRIC EFFECTS
    • Q1. Thermo-electric effects
    • Q2  Thermo-electric Devices
  • R. STRAIN PHYSICS
    • R1. Strain modulated band gap
    • R2. Strain modulated Lifshitz transitions
    • R3. Strain modulated electronic correlation
    • R4. Strain controlled CDW
    • R5. Strain controlled magnetic ordering
    • R6. Strain controlled superconductivity
  • S. NANOSCALE PHASE SEPARATION
    • S1 Frustated phase separation
    • S2 Arrested phase transitions
    • S3 Nematicity and phase transitions
    • S4 Nematicity in doped magnetic semiconductors
    • S5 Nematicity in doped perovskites
    • S6 Super-cooled water and related phases
  • T. ADVANCES IN EXPERIMENTAL METHODS
    • T1. FEL based time resolved experiments
    • T2. scanning nano X-ray diffraction
    • T3. soft x-ray diffraction
    • T4. innovation in experimental methods
  • U. ELECTRONIC DEVICES
    • U1. Devices for quantum computing
    • U2. Devices for organic electronic
    • U3. Superconducting devices
    • U4. New devices
© 2024 Superstripes onlus. All Rights Reserved. Webmaster: Paolo Alberti webmaster@superstripes.net